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Abstract

An extended version of the Bethe theory of low energy
electron diffraction (LEED) is presented and successfully
applied to a computation of diffracted beam intensity as a
function of wavelength of the incident electron. The
results show consistent behavior with respect to parameter
variation and are in reasonable agreement with measured
beam intensities.

I. INTRODUCTION

The theory of Low Energy Electron Diffraction (LEED) has been the

175 Most of these stress

object of a number of recent investigations.
the importance of dynamical effects and point out the inadequacy cf
simplg kinematic theory to describe accurately the dependence of the
diffracted beam intensiﬁiés on electron energy. The dynamical theories
of LEED that have been proposed so far may be divided into two broad
categories: .(l) self-consistent field methods,1 and (2) "matching”
formalisms.? ° Our method, which is an extension of the Bethe theory,G
belongs to the latter group. It assumes that the incident and the
diffracted electron beams are plane waves and that the crystal can be
represented by a three-dimensional, semi-infinite, périodic potential,
cut off abruptly at a plane surface. The present paper consists of three
parts: first, a brief review of the theory; then, a discussion of
results of beam intensity calculations for a fcc lattice; and finally,

a comparison with recent experimental results.’



IT. THEORY

Consider a perfect crystal, represented by a complex, periodic
>
potential, W(r),
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where bl m.n is the reciprocal lattice vector. The wave function,
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P (r), inside the crystal (i.e., for z < 0) may be written in the form
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where the integral extends over the first Brillouin zone, and wz .
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is a function of the vector p. In the case of a single incident

electron béam, represented by a plane wave, the Bloch theorem may be

invoked for the two surface dimensions (x and y). Thus, equation (2)

becomes
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where the projection of p onto the surface normal is a function of the

. >
scalar quantity, q. However, the components of p parallel to the

surface are independent of g. The integral in equation (3) may be



approximated by a sum,
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and, finally, a vector kl,m,n,q = pq + 2ﬂb2,m,n may be defined
such that
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Equation (5) is a solution of the Schroainger eguation,
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compatibiiity relations,
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or in matrix form,
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where Y is a vector whose components are the coefficients w% —
N r r I
and A is a square matrix. Assuming that both the incident and the

diffracted electron beams are plane waves, the wave function in the

vacuum may be written as

o (r) = ) e Xrmun z >0 (8)

£,m,n

where

+ ——
hﬂ,m,n = K (9)

The cohtinuity of the wave function and its derivative with
respect to the surface normal (z~direction), at the surface, z = 0,

may be stated as

-> > K -
£,m,n,q o 1 2,m,n r
2,m,n,q = %,m,n (10)
L,m,n,q £,m,n
2 >
" U{* .3 )el Lmmn,qg _
Q’lmlnlq Q,m:n:q zZ
Q'Imlnlq
. (11)
> ->
ih ° r

'Q'I L4
- <I>SL.m,n6;SZ,,m,n ) —{z)e e

2,m,n



>
where lZ is a unit vector in the

must be satisfied for all values
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z-direction. Equations (10) and (11)

of x and y, and, therefore,
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At this point, it is convenient to consider a specific case,

e.g., a cubic lattice, in order to simplify the eguations.

done without loss of generality,

to other lattices is straightforward.

constant a, we have,

This can be
since the extension of the treatment

For a cubic lattice, with

b =1 (g,mn) 13)
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Combining equations (12} and (13) vyields
\
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where P and Py are the x and y components of pq (which.are independent

of g), and eguation (9) then reads
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The index, n, in the above equation may be dropped, and the wave

function in the vacuum, equation (8), is written as

Y
o (zx) = §T e Lm + ot L,m z >0 (16)

3]

>t . .
where hz o 1S @ vector whose components are identical to those of
r

>
h% o [equations (14) and (15)], with the exception that the super-
r

14

script in h’Q n indicates the sign of its z~component. If there is
14
only one incident electron beam, whose amplitude, @o o is equal to
7

unity, equation (16) reduces to
>
O(r) = e + o e z>0 (17)

where the first and second terms on the right hand side represent the

incident and the diffracted electron beams, respectively.

It follows from equations (14) and (17) that the real parts of
P and py are determined by the direction of incidence of the primary
electron beam, whereas their imaginary parts must be zero, due to the
boundary conditions at infinity. The z~components of the wvectors
Eq, on the other hand, do not depend on the boundary conditions. Their

real parts may, in principle, be chosen arbitrarily, within the interval

0 < Re[pq J < %7 and are usually assumed to be uniformly distributed
Z

throughout that interval. If however, the number of values of g,

(i.e., the number of pq 's) is small, a uniform distribution may not
z



be the optimum choice. Methods for

for the real parts of the pq 's, as

will be discussed below.

Introducing equation (17) into
decomposing into a set of equations

various harmonics in x and y, leads
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finding the best possible values

well as their imaginary parts,

equations (10) and (11), and
relating the coefficients of the
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The quantity, ®2 m’ may be eliminated from equations (18) and (19),
14

and we obtain
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B? =X (21)

The compatibility equations (7) and the boundary condition
equations (21) may be combined into one single equation,

{

G? = g (22)

If the series representing the potential W(;) and the electron wave

function in the crystal and in vacuum are approximated by truncation,
the matrix G has more rows than columns and, therefore, equation (22)
has no exact solution. The best solution is found, according to the

principle of least sguares, by minimizing
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S = (G\B - I;I) . D(Glil — Ij)* (23)

where D is a positive, real, diagonal matrix, containing suitable

weighting coefficients, and * indicates complex conjugation. Since S

is positive and guadratic in any of the unknowns, Re(wz non q) and
r ’ T
Im(w% n.n q)' the minimum is characterized by the conditions
14 r ?
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or, equivalently, in matrix form,

where P is now a square matrix. Equation (25) is solved, not by
straightforward inversion of P, but by an iterative technique, which is

not affected by round-off errors during the computation.

It should be noted that the elements of both P and 9 contain the
components of the vectors Eq' As was pointed out above, the x and y
components of these vectors are independent of g and determined by the
angles of incidence of the primary electron beam. If the z-components
of the ;q's are treated as unknowns, they are determined by solving the

equations
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simultaneously with eguation (25). If we choose to represent the wave

function in the crystal by a single Bloch wave, i.e., if we consider

only one g, we find that Re[p ] is very nearly equal to

]1/2
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h
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_.Im(wolo'o)/z(K2 + Re(wo,o,o]] for large values of Im(wo,o'o).

Obviously, once the vector P is known, the intensities of the diffract-

2

+ ;, are computed readily from equations (18) and
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ed beams, i.e.,

(19).

ITI. BEAM INTENSITY CALCULATIONS

Using the theory outlined above, calculations were performed under

)

the following conditions:

(1) A primary electron beam of unit intensity is incident
normally on the (100) surface of a fcc lattice, with

]
lattice constant, a = 4.04 A (aluminum).

(2) The crYstal lattice is represented by a complex potential.
The shape of its real part, i.e., the relative magnitude

of the expansion coefficients, Yo mon [equation (1)], is
r

4

obtained by Fourier-analyzing the "self consistent"
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aluminum potential given in reference 8. The expansion
includes all terms for which 2% + m® + n? < 4, and the
imaginary part of the potential is assumed independent of

position and electron energy.

(3) The crystal surface, where the potential abruptly drops to

zero, lies half-way between two layers of atoms.

(4) The wave function in the crystal is approximated by a
.—)
single Bloch wave [only one p in equation (5)] whose expansion

is truncated such that 2% + m® + n? < 34.

Figure 1. illustrates the dependence of the beam intensity vs
energy curves on the assumed inner potential [Re(wo o o]]' Decreasing
r I

the inner potential by 2.5 volts translates the curves to a commensu-

rate, higher energy.

Figure 2. shows the dependence of the beam intensities .on the
magnitude of the oscillatory part of the potential, i.e., on the
elastic scattering cross section. The latter quantity is varied by
introducing a scaling factor that multiplies all coefficients,

V4 , except w . For small cross sections, only the ordinary
£,m,n 0,0,0

Bragg peaks are present. As the cross section is made larger, secondary

Bragg peaks and resonance phenomena, due to multiple scattering effects,

appear.

Figure 3. demonstrates the dependence of the intensity curves on
the magnitude of the imaginary potential, i.e., on the inelastic
scattering cross section. As the imaginary potential decreases, the
amount of "structure" (peak-to-valley ratios) increases considerably.
This behavior is to be expected. A decrease in the inelastic
scattering enhances the penetration of the primary beam and, therefore,
enhances all three-dimensional effects. Clearly, the very existence
of Bragg peaks or structure is a three-dimensional effect par excellence.
The disappearance of the secondary Bragg peaks for large values of the
imaginary potential, as seen in Figure 3, indicates that these peaks
may be attributed to multiple scattering events involving atoms in

different layers, rather than atoms in a single Iayer.
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IV. COMPARISON WITH EXPERIMENT

Beam intensity measurements on the (100) surface of aluminum single
crystals are being performed by Dr. S. M. Bedair at our laboratory.
Figure 4 compares his measurements’ with a typical set of our theoretical
curves. All three experimental curves are normalized to the same
primary electron beam current. Intensity ratios between different beams

are, therefore, represented correctly.

When considering this comparison between theory and experiment

(Figure 4), the following points should be borne in mind:

(1) No attempt has been made to optimize the parameters of the

potential, i.e., the expansion coefficients LEN
7 r

(2) The imaginary part of the potential has been assumed constant,
whereas it should vary with electron energy in order to
represent the known variation of inelastic scattering cross

sections with energy.

(3) The theoretical results reported here are based on a single
Bloch function representation. It remains to be investigated
whether this is a good approximation or there are cases
where a more rigorous multi-Bloch function treatment must be

used.

A thorough parameter optimization, along the lines indicated above,
might improve the agreement between theory and experiment considerably.

This would, however, represent a very large investment in computer time.

V.  CONCLUSIONS

We have shown that an extended Bethe theory (Section ITI of this
paper) may be applied successfully to the computation of LEED intensi-
ties. The results are in reasonable agreement with measured’ beam
intensities (Figure 4), although we have used a single Bloch function

approximation in order to avoid an excessively lengthy calculation and



there are at least two limitations inherent in our model that have to
be seriously questioned.1 These are the uses of an incident plane
wave and the assumed perfect periodicity with abrupt cutoff at the

crystal surface.
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IG' (0,0) BEAM

2 | N=4 (1,1) BEAM

RELATIVE INTENSITY OF DIFFRACTED BEAMS
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FIGURE 1. Calculated beam intensities vs energy, showing the de-
pendence on the inner potential. Conditions: imaginary part of
potential Im(wg,o,0) = 2.5 volts and elastic scattering cross
section scaling factor = 1.0. The arrows indicate Bragg relections
of order N where the inner potential correction has been included.
Beams with mixed indices are absent due to symmetry of the fcc
lattice.
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RELATIVE INTENSITY OF DIFFRACTED BEAMS
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FIGURE 2. Calculated beam intensities vs energy, showing the
dependence on the elastic scattering cross section (scaling factor).
Conditions: inner potential Re(Wg,o0,0) = 10 volts, imaginary part
of potential Im(wg,0,0) = 2.5 volts. The order of the Bragg re-
flections is indicated by N. The letters S and R designate
secondary Bragg and resonance peaks.

16



(0,0) BEAM

(1,1) BEAM
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FIGURE 3. Calculated beam intensities vs energy, showing the
dependence on the imaginaxy potential. Conditions: innerxr
potential Re(wg,0,0) = 10 volts, scaling factor = 0.707. The
letter N indicates the order of the Bragg reflections, and S
denotes a secondary Bragg peak.
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INTENSITY OF DIFFRACTED BEAMS

RELATIVE
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FIGURE 4. Comparison between measured’ and calculated beam
intensities vs energy. Theoretical conditions are as noted in
Figure 1 and experimental conditions are aluminum (100} surface,
normal incidence.
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